Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\large\frac{1+ \cos 4x }{\cot x - \tan x }$$dx$

\[\begin {array} {1 1} (a)\;-\frac{1}{8} \sin 4 x +c \\ (b)\;-\frac{1}{8} \cos 4x +c \\ (c)\;-\frac{1}{8}+ \cos 4x +c \\ (d)\;None \end {array}\]
Can you answer this question?

1 Answer

0 votes
$\int \large\frac{2 \cos ^2 2x}{\cos ^2 x - \sin ^2 x} \times$$ \sin x \cos x$$ \;dx$
$\sin 2x = 2 \sin x \cos x$
$\cos 2x = \cos ^2 x - \sin ^2 x$
$\qquad= \int \cos 2x . \sin 2x .dx$
$\qquad=\large\frac{1}{2}$$ \int \sin 4x dx$
$\qquad=\large\frac{-1}{8}$$ \cos 4x +c$
Hence b is the correct answer.
answered Dec 21, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App