Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \large\frac{(a^x -b^x)}{a^x b^x}$$dx$

\[\begin {array} {1 1} (a)\;\frac{(a/b)^x}{\log (a/b)}+\frac{(b/a)^x}{\log (b/a)}-2x+c \\ (b)\;\bigg(\frac{a/b}{\log (a/b)}\bigg)^x+\bigg(\frac{b/a}{\log (b/a)}\bigg)^x-2x+c \\ (c)\;\bigg(\frac{a}{b}\bigg)^x+\bigg(\frac{b}{a}\bigg)^x -2x+c \\ (d)\;None \end {array}\]

Can you answer this question?

1 Answer

0 votes
$\int \large\frac{a^{2x} }{(ab)^x} +\int \large\frac{b^{2x} }{(ab)^x}-\int \large\frac{2(ab)^{x} }{(ab)^x}$
$\int a^x b^{-x} dx+\int (\large\frac{b}{a} )^x $$dx- 2\int dx$
=> $\int \bigg(\large\frac{a}{b}\bigg)^x$$ dx+\int \bigg(\large\frac{b}{a}\bigg)^x$$dx-2 \int dx$
$ \large\frac{(a/b)^x}{\log (a/b)}+\frac{(b/a)^x}{\log (b/a)}$$-2x+c$
Hence a is the correct answer.
answered Dec 21, 2013 by meena.p
edited Oct 15, 2014 by sharmaaparna1
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App