Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $x^y\; y^x = 100$, evaluate $\large \frac{dy}{dx}$

$\begin{array}{1 1}(A) \large \bigg (\Large \frac{\Large \frac{x}{y} + \log y}{\Large \frac{y}{x} + \log x} \bigg) \\ (B) \large \bigg (\Large \frac{\Large \frac{y}{x} + \log x}{\Large \frac{x}{y} + \log y} \bigg) \\ (C) \large \bigg (\Large \frac{\Large \frac{x}{y} + \log x}{\Large \frac{y}{x} + \log y} \bigg) \\(D) \large \bigg (\Large \frac{\Large \frac{y}{x} + \log y}{\Large \frac{x}{y} + \log x} \bigg) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Chain Rule: $d (u, v) = u\; dv + v \; du$
  • $\log x^y \; y^x = x \log y + y \log x$
Given $x^y\; y^x = 100$
Taking $\log$ on both sides, $\log (x^y\; y^x) = \log 100$
$\Rightarrow \log x^y \; y^x = x \log y + y \log x = \log 100$
Differentiating, we get:
$y \; \large\frac{1}{x} $$ + \log x \large \frac{dy}{dx}$$+\large\frac{x}{y}\;\frac{dy}{dx}$$+\log y$ $=0$
Resolving, we get $\large\frac{dy}{dx} $$= \large \bigg (\Large \frac{\Large \frac{y}{x} + \log y}{\Large \frac{x}{y} + \log x} \bigg)$
answered Dec 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App