Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Let $f$ be differentiable for all $x$. If $f(1)=-2$ and $f'(x)\geq 2$ for $x\in [1,6]$ then

$\begin{array}{1 1}(a)\;f(6)\geq 8&(b)\;f(6)< 8\\(c)\;f(6)< 5&(d)\;f(6)=5\end{array}$

Can you answer this question?

1 Answer

0 votes
As $f(1)=-2$ and $f'(x)\geq 2\forall x\in [1,6]$
Applying Langrange's mean value theorem
$\large\frac{f(6)-f(1)}{5}$$=f'(c)\geq 2$
$\Rightarrow f(6)\geq 10+f(1)$
$\Rightarrow f(6)\geq 10-2$
$\Rightarrow f(6)\geq 8$
Hence (a) is the correct answer.
answered Dec 23, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App