logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Evaluate : $\lim\limits_{h\to 0}\large\frac{(a+h)^2\sin(a+h)-a^2\sin a}{h}$

$\begin{array}{1 1}(a)\;a^2\cos a+2a\sin a&(b)\;a^2\cos a-2a\sin a\\(c)\;a\cos a+a^2\sin a&(d)\;a\cos a+a^2\sin a\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
$\lim\limits_{h\to 0}\large\frac{(a+h)^2\sin(a+h)-a^2\sin a}{h}$
$\Rightarrow \lim\limits_{h\to 0}\large\frac{a^2[\sin(a+h)-\sin a]+2ah\sin(a+h)+h^2\sin(a+h)}{h}$
$\Rightarrow \lim\limits_{h\to 0}\large\frac{a^2[2\cos(a+h/2)\sin h/2]}{2\times h/2}+$$2a\sin(a+h)+h\sin(a+h)$
$\Rightarrow a^2\cos a+2a\sin a$
Hence (a) is the correct answer.
answered Dec 23, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...