Want to ask us a question? Click here
Browse Questions
 Ad
0 votes

# If $y(x) = \Large \int \limits_{\frac{\pi^2}{16}}^{\normalsize x^2} \large\frac{\cos x . \cos \sqrt \theta d\theta}{1+\sin^2 \sqrt \theta}$, find $\;y'(\pi)$

(A) $\large\frac{\pi^2}{8}$ $\quad$ (B) $\large\frac{\pi^2}{16}$ $\quad$ (C) $2 \pi$ $\quad$ (D) $\large\frac{\pi^2}{16}$$- 2 \pi Can you answer this question? ## 1 Answer 0 votes We can immediately see that we are integrating with respect to \theta \rightarrow x and any expression depending on x is a constant. \Rightarrow y(x) = \cos x \Large \int \limits_{\normalsize \frac{\pi^2}{16}}^{\normalsize x^2} \large\frac{ \cos \sqrt \theta d\theta}{1+\sin^2 \sqrt \theta} y(x) is a product of two expressions involving x. For the second expression, which is the integral, we can now apply the fundamental theorem as we have removed the dependence of x outside the integrand. \Rightarrow y'(x) = -\sin x \Large \int \limits_{\normalsize \frac{\pi^2}{16}}^{\normalsize x^2} \large\frac{ \cos \sqrt \theta d\theta}{1+\sin^2 \sqrt \theta}$$ + \cos x \large\frac{d}{dx} \Large \int \limits_{\normalsize \frac{\pi^2}{16}}^{\normalsize x^2} \large\frac{ \cos \sqrt \theta d\theta}{1+\sin^2 \sqrt \theta}$
$\Rightarrow y'(x) = -\sin x \Large \int \limits_{\normalsize \frac{\pi^2}{16}}^{\normalsize x^2} \large\frac{ \cos \sqrt \theta d\theta}{1+\sin^2 \sqrt \theta}$$+ \cos x \large\frac{d(x^2)}{dx} \large\frac{ \cos \sqrt x^2 }{1+\sin^2 \sqrt x^2} \Rightarrow y'(x) = -\sin x \Large \int \limits_{\normalsize \frac{\pi^2}{16}}^{\normalsize x^2} \large\frac{ \cos \sqrt \theta d\theta}{1+\sin^2 \sqrt \theta}$$ + \large\frac{2x\cos^2 x}{1+\sin^2x}$
We are solving for $y'(\pi)$. Since $\sin \pi = 0$, the first term $= 0$.

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer