$\begin {array} {1 1} (a)\;0.003 \times 10^{19}photon/s & \quad (b)\;30 \times 10^{16}photon/s \\ (c)\;3 \times 10^{15}photon/s & \quad (d)\;0.33 \times 10^{16}photon/s \end {array}$

The energy of each photon $ E = hc/ \lambda$

$ =( 6.626 \times 10^{-34} \times 3 \times 10^8 ) / 632.8 \times 10^{-9} = 3.131 \times 10^{-19}J$

Number of photons arriving per second, at a target irradiated by the beam = $n$

Equation of power, $ p = nE$

So, $ n = P/E$

$=(9.42 \times 10^{-3}) / (3.141 \times 10^{-19} )=3 \times 10^{-16}$ photon/s = $ 0.003 \times 10^{19} $ photon/s

Ask Question

Tag:MathPhyChemBioOther

Take Test

...