Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Integral Calculus
Answer
Comment
Share
Q)

Integrate : $\int \large\frac{\sin 2x }{a \cos ^2 x + b \sin ^2 x }$$dx$

$(a)\;\frac{1}{b-a} \log _e |(a \cos ^2 x + b \sin ^2 x)|+c \qquad(b)\;\frac{1}{b-a} \log _e |(a \sin ^2 x + b \cos ^2 x)|+c \qquad(c)\;\frac{1}{b-a} \log _e |(a \sin ^2 x + b \sin ^2 x)|+c \qquad (d)\;None$

1 Answer

Comment
A)
Toolbox:
  • $\int \large\frac{1}{x}$$.dx=log_e |x|$
Given: $I=\int \large\frac{\sin 2x }{a \cos ^2 x + b \sin ^2 x }$$dx$
Let $ a\cos ^2 x + b \sin ^2 x=t$
differentiating both the sides
$\Rightarrow\:(-2a\:cosx sinx+2b\:sinxcosx)dx=dt$
$\Rightarrow\:2sinxcosx.(b-a)dx=dt$
But $2sinxcosx=sin2x$
$\therefore\:(b-a).sin2x\:dx=dt$
$\Rightarrow\:sin2x\:dx=\large\frac{1}{b-a}$$.dt$
Substituting the values of $t$ and $dx$ in $I$ we get
$\Rightarrow\:I=\int \large\frac{1}{(b-a)} \times \frac{1}{t} $$.dt$
$\Rightarrow\:I=\large\frac{1}{(b-a)}$$\int \large\frac{1}{t}$$dt=\large\frac{1}{b-a}$$log_e|t|+c$
Since $\int \large\frac{1}{t}$$.dt=log_e |t|$
$\Rightarrow\:I=\large\frac{1}{b-a}$$ \log _e |(a \cos ^2 x + b \sin ^2 x)|+c$
Hence (a) is the correct answer.
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...