Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \large\frac{\sin 2x }{a \cos ^2 x + b \sin ^2 x }$$dx$

$(a)\;\frac{1}{b-a} \log _e |(a \cos ^2 x + b \sin ^2 x)|+c \qquad(b)\;\frac{1}{b-a} \log _e |(a \sin ^2 x + b \cos ^2 x)|+c \qquad(c)\;\frac{1}{b-a} \log _e |(a \sin ^2 x + b \sin ^2 x)|+c \qquad (d)\;None$
Can you answer this question?

1 Answer

0 votes
  • $\int \large\frac{1}{x}$$.dx=log_e |x|$
Given: $I=\int \large\frac{\sin 2x }{a \cos ^2 x + b \sin ^2 x }$$dx$
Let $ a\cos ^2 x + b \sin ^2 x=t$
differentiating both the sides
$\Rightarrow\:(-2a\:cosx sinx+2b\:sinxcosx)dx=dt$
But $2sinxcosx=sin2x$
Substituting the values of $t$ and $dx$ in $I$ we get
$\Rightarrow\:I=\int \large\frac{1}{(b-a)} \times \frac{1}{t} $$.dt$
$\Rightarrow\:I=\large\frac{1}{(b-a)}$$\int \large\frac{1}{t}$$dt=\large\frac{1}{b-a}$$log_e|t|+c$
Since $\int \large\frac{1}{t}$$.dt=log_e |t|$
$\Rightarrow\:I=\large\frac{1}{b-a}$$ \log _e |(a \cos ^2 x + b \sin ^2 x)|+c$
Hence (a) is the correct answer.
answered Dec 23, 2013 by meena.p
edited Mar 13, 2014 by rvidyagovindarajan_1
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App