Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Find the equation of the tangent and normal to the curve $ \;y=\large\frac{1+\sin x}{\cos x}$ at $\;x=\large\frac{\pi}{4}$

Can you answer this question?

1 Answer

0 votes
  • If $y=f(x)$ then $\large\frac{dy}{dx}$$=f'(x)$ is the rate of change of $y$ w.r.t $x$
  • $\large\frac{dy}{dx_{(x_1,y_1)}}$ is the slope of the tangent to the curve at the point $(x_1,y_1) $ on the curve. It is the slope of the curve at that point.
  • The normal at a point $(x_1,y_1)$ on $y=f(x)$ is perpendicular to the tangent at $(x_1,y_1)$
$y=\large\frac{1+\sin x}{\cos x}$ at $x=\large\frac{\pi}{4}$
Step 1:
When $x=\large\frac{\pi}{4}$$ y=\large\frac{1+\Large\frac{1}{\sqrt 2}}{\Large\frac{1}{\sqrt 2}}$
$\qquad=\sqrt 2+1$
We are required to find the equations of the tangent and the normal at $\bigg(\large\frac{\pi}{4},$$ \sqrt 2+1\bigg)$
Step 2:
The slope of the tangent at $\bigg(\large\frac{\pi}{4},$$ \sqrt 2+1\bigg)$ is
$m=\large\frac{dy}{dx_{(\Large\frac{\pi}{4},\sqrt 2+1)}}$
$\large\frac{dy}{dx}=\large\frac{\cos x(\cos x)-(1+\sin x)(-\sin x)}{\cos ^2 x}$
$\qquad=\large\frac{\cos^2 x+\sin x+\sin^2 x}{\cos ^2 x}$
$\qquad=\large\frac{1+\sin x}{\cos ^2 x}$
$m=\large\frac{dy}{dx_{(\Large\frac{\pi}{4},\sqrt 2+1)}}$
$\quad=\large\frac{1+\Large \frac{1}{\sqrt 2}}{\Large\frac{1}{2}}$
$\quad=\large\frac{\sqrt 2+1}{\sqrt 2}$$.2$
$\quad=2 +\sqrt 2$
Equation of the tangent at $\bigg(\large\frac{\pi}{4},$$ \sqrt 2+1\bigg)$
$y-(\sqrt 2+1)=(2 +\sqrt {2})(x-\large\frac{\pi}{4})$
Step 3:
Normal is $\perp$ to the tangent. Its slope equation of the normal at $\bigg(\large\frac{\pi}{4},$$ \sqrt 2+1\bigg)$
$y-(\sqrt 2+1)=\large\frac{-1}{(2 +\sqrt 2)}($$x-\large\frac{\pi}{4})$
answered Dec 23, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App