logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Prove that \( tan^{-1} \bigg(\frac{\large 1}{\large 4} \bigg) + tan^{-1} \bigg( \frac{\large 2}{\large 9} \bigg ) = \frac{\large 1}{\large 2} cos^{-1} \bigg( \frac{3}{5} \bigg). \)

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • \( tan^{-1}x+tan^{-1}y=tan^{-1}\large\frac{x+y}{1-xy}\:\:\:xy<1\)
  • \( tan^{-1}x=cos^{-1}\large\frac{1}{\sqrt{1+x^2}}\)
  • \(2tan^{-1}x=tan^{-1}\large\frac{2x}{1-x^2}\)
L.H.S.=
We shall rewrie the question as prove \(2.(tan^{-1}\large\frac{1}{4}+tan^{-1}\large\frac{2}{9}=cos^{-1}\large\frac{3}{5}\)
 
By taking \(x=\large\frac{1}{4}\:and\:y=\large\frac{2}{9}\:we\:get\)
\(\large\frac{x+y}{1-xy}=\large\frac{\large\frac{1}{4}+\large\frac{2}{9}}{1-\large\frac{1}{4}.\large\frac{2}{9}}=\large\frac{17}{36}.\large\frac{36}{34}=\large\frac{17}{34}=\large\frac{1}{2}\)
 
Substituting in the above formula we get L.H.S.=
\( tan^{-1}\large\frac{1}{4}+tan^{-1}\large\frac{2}{9}=tan^{-1}\large\frac{1}{2}\)
By taking \(x=\large\frac{1}{2},\:\large\frac{2x}{1-x^2}=\frac{2\times\frac{1}{2}}{1-\large\frac{1}{4}}=\large\frac{4}{3}\)
 
Substituting in the above formula of \(2tan^{-1}x\) we get
\(2tan^{-1}\large\frac{1}{2}= tan^{-1}\large\frac{4}{3}\)
By taking \(x=\large\frac{4}{3}\:we\:get\:\large\frac{1}{\sqrt{1+x^2}}=\large\frac{1}{\sqrt{1+\large\frac{16}{9}}}=\large\frac{3}{5}\)
 
By substituting in the formula of \(tan{-1}x=cos^{-1}\large\frac{1}{\sqrt{1+x^2}}\) we get
\(tan{-1}\large\frac{4}{3}=cos^{-1}\large\frac{3}{5}\)
Then L.H.S. becomes
\(\Rightarrow\:2tan^{-1}\large\frac{1}{2}=tan^{-1}\large\frac{4}{3}=cos^{-1}\large\frac{3}{5}\)
=R.H.S.

 

answered Mar 1, 2013 by thanvigandhi_1
edited Mar 19, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...