Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \tan x \tan 2x \tan 3x dx$

$(a)\;\frac{1}{3}\log | \sec (3x)|-\frac{1}{2} \log | \sec 2x| - \log | \sec x | +c \\(b)\;\frac{4}{3}\log | \sec (3x)|-\frac{1}{2} \log | \sec 2x| - \log | \sec x | +c \\(c)\;\frac{1}{3}\log | \sec (3x)|+\frac{1}{2} \log | \sec 2x| - \log | \sec x | +c \\ (d)\;\frac{7}{3}\log | \sec (3x)|-\frac{1}{2} \log | \sec 2x| - \log | \sec x | +c$

Can you answer this question?

1 Answer

0 votes
$\int \tan x \tan 2x \tan 3x dx$-----(i)
$\tan 3x= \tan (x+2x)$
$\qquad= \large\frac{\tan x +\tan 2x}{1- \tan x \tan 2x}$
$\bigg\{ \tan (A+B)= \large\frac{\tan A+ \tan B}{1- \tan A \tan B} \bigg\}$
$\tan 3x -\tan x -\tan 2x =\tan x \tan 2x \tan 3x$-------(ii)
From equation (i) and (ii)
$\int \tan 3x- \tan x- \tan 2x dx$
=>$\large\frac{1}{3}$$\log | \sec (3x)|-\frac{1}{2} \log | \sec 2x| - \log | \sec x | +c$
Hence a is the correct answer.
answered Dec 24, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App