logo

Ask Questions, Get Answers

X
 

$\lim\limits_{x\to a}\large\frac{\log(x-a)}{\log(e^x-e^a)}$ is

$(a)\;1\qquad(b)\;e^{\large a}\qquad(c)\;e^{\large -a}\qquad(d)\;-1$

1 Answer

$\lim\limits_{x\to a}\large\frac{\log(x-a)}{\log(e^x-e^a)}=$$\lim\limits_{x\to a}\big(\large\frac{1}{x-a}\big)/\big(\large\frac{e^x}{e^x-e^a}\big)$ (Using L Hospital's rule)
$\Rightarrow \lim\limits_{x\to a}\large\frac{\Large\frac{e^x-e^a}{e^x}}{x-a}$
$\Rightarrow \lim\limits_{x\to a}\large\frac{1-e^{\large a-x}}{x-a}$
$\Rightarrow \lim\limits_{x\to a}\large\frac{e^{\large a-x}-1}{a-x}$
$\Rightarrow 1$
Hence (a) is the correct answer.
answered Dec 24, 2013 by sreemathi.v
 
Download clay6 mobile appDownload clay6 mobile app
...
X