logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

$\lim\limits_{x\to \infty}[x-\sqrt{x^2+x}]$=

$(a)\;\large\frac{1}{2}$$\qquad(b)\;1\qquad(c)\;\large\frac{-1}{2}$$\qquad(d)\;0$

Can you answer this question?
 
 

1 Answer

0 votes
Given limit =$\lim\limits_{x\to \infty}\large\frac{x^2-(x^2+x)}{x+\sqrt{x^2+x}}$
$\Rightarrow \lim\limits_{x\to \infty}\large\frac{-x}{x(1+\sqrt{1+1/x)}}$
$\Rightarrow \lim\limits_{x\to \infty}\large\frac{-1}{1+\sqrt{1+1/x}}$
$\Rightarrow \large\frac{-1}{2}$
Hence (c) is the correct answer.
answered Dec 24, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...