Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Vector Algebra
0 votes

The vector $\overrightarrow a=\alpha\hat i+2\hat j+\beta\hat k$ lies in the plane of the vectors $\overrightarrow b=\hat i+\hat j$ and $\overrightarrow c=\hat j+\hat k$ and bisects the angle between $\overrightarrow b\:\:and\:\:\overrightarrow c$, then $(\alpha,\beta)=?$

Can you answer this question?

1 Answer

0 votes
Given: $\overrightarrow a=\alpha \hat i+2\hat j+\beta \hat k,\:\overrightarrow b=\hat i+\hat j\:\:\overrightarrow c=\hat j+\hat k$ are coplanar.
$\Rightarrow\:[\overrightarrow a\:\overrightarrow b\:\overrightarrow c]=0$
$\Rightarrow\:\left |\begin {array}{ccc}\alpha & 2 & \beta\\ 1 & 1 & 0\\ 0 & 1 & 1\end {array}\right |=0$
$\Rightarrow\:\alpha-2+\beta=0$ or $\alpha+\beta=2$......(i)
Also it is given that $\overrightarrow a$ bisects the angle between $\overrightarrow b\:\:and\:\:\overrightarrow c$
$\Rightarrow\:\large\frac{\alpha+2}{|\overrightarrow a||\overrightarrow b|}=\frac{2+\beta}{|\overrightarrow a||\overrightarrow c|}$
From (i) and (ii) $(\alpha,\beta)=(1,1)$
answered Dec 29, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App