logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $f$ is continuous on $[0,1]$ and $f\big(\large\frac{1}{3}\big)$$=1$ then $\lim\limits_{n\to \infty}f(\large\frac{n}{\sqrt{9n^2+1}}\big)$=

$(a)\;1\qquad(b)\;0\qquad(c)\;1/3\qquad(d)\;None\;of\;these$

Can you answer this question?
 
 

1 Answer

0 votes
$\lim\limits_{n\to \infty}f\big(\large\frac{n}{\sqrt{9n^2+1}}\big)=$$f\big(\lim\limits_{n\to \infty}\large\frac{n}{\sqrt{9n^2+1}}\big)$
$\Rightarrow f(\large\frac{1}{3})$
$\Rightarrow 1$
Hence (a) is the correct answer.
answered Dec 30, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...