Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If $a+b+c\neq 0\;and\;\begin{vmatrix}a & b & c\\b & c & a\\c & a & b\end{vmatrix}=0,then\;prove\;that\;a=b=c.$

Can you answer this question?

1 Answer

0 votes
  • If some or all elements of a row or a column of a determinant are expressed as sum of two(or more) terms,then the determinant can be expressed as sum of two (or more) determinants.
  • If each element of a row (or a column)of a determinant is multiplied by a constant k,then its value gets multiplied by k.
Let $\Delta=\begin{vmatrix}a & b& c\\b & c & a\\c & a & b\end{vmatrix}$
Apply $R_1\rightarrow R_1+R_2+R_3$
$\Delta=\begin{vmatrix}a+b+c & a+b+c& a+b+c\\b & c & a\\c & a & b\end{vmatrix}$
Take (a+b+c) as the common factor from $R_1$,
$\Delta=(a+b+c)\begin{vmatrix}1 & 1& 1\\b & c & a\\c & a & b\end{vmatrix}$
Apply $C_2\rightarrow C_2-C_3$ and $C_3\rightarrow C_3-C_1$
$\Delta=(a+b+c)\begin{vmatrix}1 & 0& 0\\b & c-a & a-b\\c & a-b & b-c\end{vmatrix}$
Expanding along $R_1$ we get,
Given $\mid \Delta\mid=0$ and $(a+b+c)\neq 0$
Since (a+b+c)$\neq 0$
$\Rightarrow (ab+bc+ca-a^2+b^2-c^2)=0.$
Multiply by 2
We get
We know $(a-b)^2=a^2+b^2-2ab.$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0.$
[$(a-b)^2,(b-c)^2,(c-a)^2$] are non negative
Therefore (a-b)=(b-c)=(c-a)
$\Rightarrow a=b=c$
Hence proved.
answered Mar 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App