logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Integral Calculus

Integrate : $\int \sqrt {\large\frac{1-x}{1+x}}.\frac{1}{x}$$dx$

$(a)\;\log |\frac{1-\sqrt {1-x^2}}{x}|-\sin ^{-1} x+c \\(b)\;-\cos^{-1}x+c \\(c)\;\log |\frac{1-\sqrt {1-x^2}}{x}|- \tan ^{-1}x + c \\ (d)\;None$

1 Answer

$\int \large\frac{1}{x} . \sqrt {\large\frac{1-x}{1+x} \times \frac{1-x}{1-x}}$$dx$
$\qquad= \int \large\frac{1}{x} \frac{(1-x)}{\sqrt {1-x^2}}$$dx$
$\qquad= \int \large\frac{1}{x \sqrt {1-x^2}} \frac{1}{\sqrt {1-x^2}}$$dx$
$\qquad= \int \large\frac{1}{x \sqrt {1-x^2}} $$dx-\int \frac{1}{\sqrt {1-x^2}}$$dx$
$\qquad= \int \large\frac{1}{x \sqrt {1-x^2}}$$dx-\sin ^{-1} x +c$
$x= \sin \theta $
differentiate with x
$dx= \cos \theta d \theta$
=>$\int \large\frac{\cos \theta d\theta }{\sin \theta . \cos \theta }-$$ \sin ^{-1} x +c$
=>$\int cosec \theta d\theta - \sin ^{-1} x +c$
=> $\log | cosec \theta - \cot \theta | - \sin ^{-1} x +c$
$\log |\large\frac{1-\sqrt {1-x^2}}{x}|$$-\sin ^{-1}+c$
Hence a is the correct answer.
answered Dec 30, 2013 by meena.p
 
Download clay6 mobile appDownload clay6 mobile app
...
X