Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If x+y+z=0,prove that $\begin{vmatrix}xa & yb & zc\\yc & za & xb\\zb & xc & ya\end{vmatrix}=xyz\begin{vmatrix}a & b & c\\c & a & b\\b & c & a\end{vmatrix}$.

Can you answer this question?

1 Answer

0 votes
  • If $A=\begin{vmatrix}a_{11} &a_{21} & a_{31}\\a_{12} &a_{22} &a_{32}\\a_{13} &a_{23} &a_{33}\end{vmatrix}$
  • $|A|=a_{11}(a_{22}\times a_{33}-a_{32}\times a_{23})-a_{21}(a_{12}\times a_{33}-a_{32}\times a_{13})+a_{31}(a_{12}\times a_{23}-a_{22}\times a_{13})$
  • If each row or column of a determinant is multiplied by k,then its value is multiplied by k,then the value of the determinant is k|A|.
  • By the above property we can take out any common factor from any one row or any one column of a given determinant.
Let $\Delta=\begin{vmatrix}xa & yb & zc\\yc & za & xb\\zb &xc & ya\end{vmatrix}$
Divide $C_1$ by x,$C_2$ by y and $C_3$ by z
$\Rightarrow \Delta=xyz\begin{vmatrix}a & b& c\\\frac{y}{x}c&\frac{z}{y}a &\frac{x}{z}b\\\frac{z}{x} & \frac{x}{y}c &\frac{y}{z}a\end{vmatrix}$
On expanding along $R_1$ we get,
$\Delta=xyz\bigg(a[\frac{z}{y}a\times \frac{y}{z}a-\frac{x}{z}b\times\frac{x}{y}c]-b[\frac{y}{x}c\times \frac{y}{z}a-\frac{x}{z}b\times \frac{z}{x}b]+c[\frac{y}{x}c\times \frac{x}{y}c-\frac{z}{y}a\times \frac{z}{x}b]\bigg)$
On simplifying we get,
On simplifying further we get,
But it is given that $x+y+z\neq 0$
Therefore $x^3+y^3+z^3=3abc$
$\Rightarrow\Delta =(xyz)[a^3+b^3+c^3]-abc[3xyz]$
Now consider $\begin{vmatrix}a & b& c\\c & a & b\\b & c & a\end{vmatrix}$
Expanding along $R_1$ we get,
Therefore $\begin{vmatrix}a & b& c\\c & a & b\\b & c & a\end{vmatrix}=a^3+b^3+c^3-3abc$
Now substituting this in the LHS we get,
$\Delta=xyz\begin{vmatrix}a & b& c\\c & a & b\\b & c & a\end{vmatrix}$
Hence proved.
answered Mar 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App