Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Find the value of the determinant $\begin{vmatrix}a-b & b+c & a\\b-c & c+a & b\\c-a & a+b & c\end{vmatrix}$

$\begin{array}{1 1} \quad a^3+b^3+c^3 \\ \quad 3bc \\ \quad a^3+b^3+c^3-3abc \\ \text{none of these} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • If A is a square matrix such that element of a row (or a column) of A is expressed as the sum of two or more terms,then the determinant of A can be expressed as the sum of the determinants of two or more matrices.
  • If $A=\begin{vmatrix}a_{11} &a_{21} & a_{31}\\a_{12} &a_{22} &a_{32}\\a_{13} &a_{23} &a_{33}\end{vmatrix}$
  • $|A|=a_{11}(a_{22}\times a_{33}-a_{32}\times a_{23})-a_{21}(a_{12}\times a_{33}-a_{32}\times a_{13})+a_{31}(a_{12}\times a_{23}-a_{22}\times a_{13})$
Let $\Delta=\begin{vmatrix}a-b & b+c & a\\b-c & c+a & b\\c-a & a+b & c\end{vmatrix}$
Apply $R_1\rightarrow R_3-R_1$
$\Delta=\begin{vmatrix}b & b+c & a\\c & c+a & b\\a & a+b & c\end{vmatrix}$
This can be split and written as
$\Delta=\begin{vmatrix}b & b & a\\c & c & b\\a & a & c\end{vmatrix}+\begin{vmatrix}b & c & a\\c &a & b\\a & b & c\end{vmatrix}$
Hence $\Delta=\Delta_1+\Delta_2$
In $\Delta_1$ since two columns are identical its value is 0.
Therefore $\Delta=\begin{vmatrix}b & c & a\\c & a & b\\a & b & c\end{vmatrix}$
Expanding along $R_1$ we get,
$\quad=3abc-(a^3+b^3+c^3)$ or $a^3+b^3+c^3-3abc$
Hence the correct answer is C.
answered Mar 26, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App