logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Let $f:R\rightarrow R$ be a differentiable function and $f(1)=4$, then the value of $\large \int_4^{f(x)}\large\frac{2t\;dt}{x-1}$ is

$(a)\;8f'(1)\qquad(b)\;4f'(1)\qquad(c)\;2f'(1)\qquad(d)\;f'(1)$

Can you answer this question?
 
 

1 Answer

0 votes
We have $f:R\rightarrow R$ a differentiable function and $f(1)=4$
$\lim\limits_{x\to 1}\int\limits_4^{f(x)}\large\frac{2t}{x-1}$$dt=\lim\limits_{x\to 1}\big[\large\frac{t^2}{x-1}\big]_4^{f(x)}$
$\Rightarrow \lim\limits_{x\to 1}\large\frac{(f(x))^2-16}{x-1}$
$\Rightarrow \lim\limits_{x\to 1}\large\frac{f(x)-4}{x-1}.$$\lim\limits_{x\to 1}f(x)+4$
Using $f(1)=4$
$\Rightarrow f'(1).f((1)+4)=8f'(1)$
Hence (a) is the correct answer.
answered Dec 31, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...