Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The left hand derivative of $f(x)=[x]\sin(\pi x)$ at $x=k$, where $k$ is an integer is

$\begin{array}{1 1}(a)\;(-1)^k(k-1)\pi&(b)\;(-1)^{k-1}(k-1)\pi\\(c)\;(-1)^kk\pi&(d)\;(-1)^{k-1}k\pi\end{array}$

Can you answer this question?

1 Answer

0 votes
At LHD=$\lim\limits_{h\to 0}\large\frac{f(k)-f(k-h)}{h}$ [ k-integer]
$\Rightarrow \lim\limits_{h\to 0}\large\frac{[k]\sin k\pi-[k-h]\sin(k-h)\pi}{h}$
$\Rightarrow \lim\limits_{h\to 0}\large\frac{-(k-1)\sin(k-h)\pi}{h}$
$\sin k\pi=0$
$\Rightarrow \lim\limits_{h\to 0}\large\frac{-(k-1)-(1)^{k-1}\sin h\pi}{h\pi}$$\times \pi$
$\Rightarrow \lim\limits_{h\to 0}\large\frac{-(k-1)(-1)^{k-1}\sin h\pi}{h\pi}$$\times \pi$
$\Rightarrow \pi(k-1)(-1)^k$
Hence (a) is the correct answer.
answered Dec 31, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App