Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If A,B and C are angles of a triangle ,then the determinant$\begin{vmatrix}1 & \cos C & \cos B\\\cos C & 1 & \cos A\\\cos B & \cos A & 1\end{vmatrix}$ is equal to

$\begin{array}{1 1}(A)\quad 0 & (B)\quad -1\\(C)\quad 1 & (D)\quad None\;of\;these\end{array}$
Can you answer this question?

1 Answer

0 votes
  • If $A=\begin{vmatrix}a_{11} &a_{21} & a_{31}\\a_{12} &a_{22} &a_{32}\\a_{13} &a_{23} &a_{33}\end{vmatrix}$
  • $|A|=a_{11}(a_{22}\times a_{33}-a_{32}\times a_{23})-a_{21}(a_{12}\times a_{33}-a_{32}\times a_{13})+a_{31}(a_{12}\times a_{23}-a_{22}\times a_{13})$
Let $\Delta=\begin{vmatrix}1 & cos C & cos B\\cos C & 1 &cos A\\cos B& cos A & 1\end{vmatrix}$
Expanding along $R_1$ we get,
$\Delta=1(1-cos^2A)-cos C(cos C-cos A cos B)+cos B(cos Ccos A-cos B)$
$\quad=1-cos^2A-cos^2C+cos Acos B cos C+cos A cos B cos C-cos^2A$
$\quad=1+2cos Acos Bcos C-(cos^2A+cos^2B+cos ^2C)$
But $cos ^2A+cos^2B+cos^2C=1+2cos A cosB cos C$
Substituting this we get,
$\Delta=1+2cos A cos B cos C-1-2cos A cos B cos C=0.$
Hence $\Delta=0.$
answered Mar 26, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App