logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

We wish to see inside an atom. Assuming the atom to have a diameter of 100 pm, this means that one must be able to resolve a width of say 10 pm. If an electron microscope is used, the minimum electron energy required is about

$\begin {array} {1 1} (a)\;1.5\: KeV & \quad (b)\;15\: KeV \\ (c)\;150\: KeV & \quad (d)\;1.5\: MeV \end {array}$

 

Can you answer this question?
 
 

1 Answer

+1 vote
Ans : (b)
$E = \large\frac{1}{2} mv^2 = \large\frac{1}{2} m \bigg(\large\frac{h}{m\lambda} \bigg)^2\: \: \: \: \bigg[ \lambda= \large\frac{h}{mv} \bigg]$
$= \large\frac{1}{2} \large\frac{h^2}{2m \lambda^2}$
$E \: in \: eV = \large\frac{1}{2} \large\frac{h^2}{2mλ^2e}$
$= \large\frac{(6.63 \times 10^{-34} )^2}{ (2 \times 9.11 \times 10^{-31} \times 10^{-11} \times 10^{-11} \times 1.6 \times 10^{-19} )}$
$= 1.5 \times 10^4 \: eV= 15\: keV$

 

answered Dec 31, 2013 by thanvigandhi_1
edited Mar 13, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...