logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \large\frac{3x^2+5}{(x^2+1)(x^2+4)}$

$(a)\;\frac{2}{3} \tan ^{-1}x+\frac{7}{6} \tan ^{-1}(\frac{x}{2})+c \\(b)\; \tan ^{-1} x+\frac{7}{6} \cot^{-1}(\frac{x}{2})+c \\(c)\; \tan ^{-1}x+\cot ^{-1}x+c \\ (d)\;None$
Can you answer this question?
 
 

1 Answer

0 votes
$\int \large\frac{3x^2+5}{(x^2+1)(x^2+4)}$
Put $x^2=-1$ and $x^2=-4$
=> $\int \large\frac{3(-1) +5}{(x^2+1)(-1+4)}$$dx+\int \large\frac{3(-4)+5}{(-4+1)(x^2+4)}$
=> $\large\frac{2}{3} \int \frac{1}{x^2+1}$$dx+\frac{7}{3} \int \large\frac{1}{x^2+4}$$dx$
$\large\frac{2}{3} $$\tan ^{-1}x+\frac{7}{6} \tan ^{-1}(\frac{x}{2})+c$
Hence a is the correct answer.
answered Dec 31, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...