Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Let $f:R\rightarrow R$ be a function defined by $f(x)=min\{x+1,\mid x\mid+1\}$. Then which of the following is true ?

$\begin{array}{1 1}(a)\;f(x)\;is\;differentiable\;everywhere\\(b)\;f(x)\;is\;not\;differentiable\;at\;x=0\\(c)\;f(x)\geq 1\;for \;all\;x\in R\\(d)\;f(x)\;is \;not\;differentiable\;at\;x=1\end{array}$

Can you answer this question?

1 Answer

0 votes
$\Rightarrow$ Hence f(x) is differentiable everywhere for all $x\in R$
Hence (a) is the correct answer.
answered Dec 31, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App