Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Use the formula $\lim\limits_{x\to 0}\large\frac{a^x-1}{x}=$$ln\; a$ to find $\lim\limits_{x\to 0}\large\frac{2^x-1}{(1+x)^{1/2}-1}$

$(a)\;2\qquad(b)\;2ln \;2\qquad(c)\;ln \;2\qquad(d)\;0$

Can you answer this question?

1 Answer

0 votes
$\lim\limits_{x\to 0}\large\frac{2^x-1}{\sqrt{1+x}-1}=$$\lim\limits_{x\to 0}\large\frac{2^x-1}{\sqrt{1+x}-1}\times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$
$\Rightarrow \lim\limits_{x\to 0}\large\frac{(2^x-1)(\sqrt{1+x}+1)}{1+x-1}$
$\Rightarrow \lim\limits_{x\to 0}\large\frac{(2^x-1)(\sqrt{1+x}+1)}{x}$
$\Rightarrow \lim\limits_{x\to 0}\large\frac{2^x-1}{x}$$\lim\limits_{x\to 0}(\sqrt{1+x}+1)$
$\Rightarrow ln \;2.(1+1)$
$\Rightarrow 2ln \;2$
Hence (b) is the correct answer.
answered Dec 31, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App