Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the value of p for which the function $f(x)=\left\{\begin{array}{ 1 1}\large\frac{(4^x-1)^3}{\sin\big(x/p\big)\log \big(1+\Large\frac{x^2}{3}\big)}&x\neq 0\\12(\log 4)^3&x=0\end{array}\right.$ is continuous at $x=0$


Can you answer this question?

1 Answer

0 votes
$f$ continuous at $x=0$
$\Rightarrow f(0)=\lim\limits_{x\to 0}f(x)$
$\Rightarrow 12(\log 4)^3=\lim\limits_{x\to 0}\big[\large\frac{4^x-1}{x}\big]^3.\frac{x^3}{\Large\frac{\sin\big(x/p\big)}{x/p}\big(\Large\frac{x}{p}\big)}\times \large\frac{1}{\Large\frac{x^2}{3}\log[1+(x^2/3)]^{1/x^3}}$
$\Rightarrow 12(\log 4)^3$
$\Rightarrow (\log 4)^3.3p.\large\frac{1}{\log e}$
$\Rightarrow 3p(\log 4)^3$
$\Rightarrow 3p=12$
$\Rightarrow p=4$
Hence (b) is the correct answer.
answered Dec 31, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App