Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

The maximum value of $\begin{vmatrix}1 & 1 & 1\\1 & 1-sin\theta & 1\\1-\cos\theta & 1 & 1\end{vmatrix}\;(is\;\theta\; is\; real\;number)$

\[\begin{array}{1 1}(A)\quad \frac{1}{2} & (B)\quad \frac{\sqrt 3}{2}\\(C)\quad \sqrt 2 & (D)\quad \frac{2\sqrt 3}{4}\end{array}\]
Can you answer this question?

1 Answer

0 votes
  • If $A=\begin{vmatrix}a_{11} &a_{21} & a_{31}\\a_{12} &a_{22} &a_{32}\\a_{13} &a_{23} &a_{33}\end{vmatrix}$
  • $|A|=a_{11}(a_{22}\times a_{33}-a_{32}\times a_{23})-a_{21}(a_{12}\times a_{33}-a_{32}\times a_{13})+a_{31}(a_{12}\times a_{23}-a_{22}\times a_{13})$
  • $sin 2\theta=2sin\theta cos\theta$
Let $\Delta=\begin{vmatrix}1 & 1 & 1\\1 & 1-sin\theta & 1\\1-cos\theta & 1 & 1\end{vmatrix}$
Apply $R_2\rightarrow R_3-R_2$ and $R_3\rightarrow R_3-R_1$
$\Delta=\begin{vmatrix}1 & 0 & 0\\1 & sin\theta & 0\\1-cos \theta &0 & cos \theta\end{vmatrix}$
Expanding along $R_1$
$\Delta=1(sin\theta cos\theta)$
$\Delta=sin\theta cos\theta$
But $sin2\theta=2sin\theta cos\theta$
$\frac{1}{2}sin 2\theta=sin\theta cos\theta$
Substituting this we get,
If $\theta=0$ then $sin2\theta=0$
If $\theta=\frac{\pi}{2}$ then $sin2\frac{\pi}{2}=0$ ($sin\pi=0$)
If $\theta=\frac{\pi}{3}$ then $sin2\frac{\pi}{3}=\frac{\sqrt 3}{2}$
If $\theta=\frac{\pi}{6}$ then $sin2\frac{\pi}{6}=\frac{\sqrt 3}{2}$
If $\theta=\frac{\pi}{4}$ then $sin2\frac{\pi}{4}=sin\frac{\pi}{2}=1.$
Therefore $\Delta=\frac{1}{2}\times 1=\frac{1}{2}$
Hence $\Delta$ will have maximum value of $\frac{1}{2}$
Hence A is the correct answer.
answered Mar 26, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App