Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int x\bigg( \large\frac{\sec 2x -1}{\sec 2x+1}\bigg) dx$

$(a)\;x \tan x +\log |\sec x | -\frac{x^2}{2}+c \\(b)\;x \tan x -\log |\sec x | -\frac{x^2}{2}+c \\(c)\; -x \tan x -\log |\sec x | -\frac{x^2}{2}+c \\ (d)\;none $
Can you answer this question?

1 Answer

0 votes
$\int x \bigg( \large\frac{\sec 2x-1}{\sec 2 x +1}\bigg)$$dx$
$\int x \bigg( \large\frac{1-\cos 2x}{1+ \cos 2x}\bigg)$$dx$
=> $\int x. \tan ^2 x dx$
=> $\int x(\sec^2 x -1)dx$
=> $\int x \sec^2 x dx -\int x dx$
=> $x. \tan x -\int \tan x dx -\large\frac{x^2}{2}$
=> $ x \tan x - \log | \sec x| -\large\frac{x^2}{2}$$+c$
Hence b is the correct answer.


answered Jan 2, 2014 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App