Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If $x,y,z$ are all different from zero and $\begin{vmatrix}1+x & 1 & 1\\1 & 1+y & 1\\1 & 1 & 1+z\end{vmatrix}$ = 0, then value of $x^{-1}+y^{-1}+z^{-1}$ is

$\begin{array}{1 1} xyz \\ x^{-1}y^{-1}z^{-1} 1 \\ -x-y-z \\ -1\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $A=\begin{vmatrix}a_{11} &a_{21} & a_{31}\\a_{12} &a_{22} &a_{32}\\a_{13} &a_{23} &a_{33}\end{vmatrix}$
  • $|A|=(-1)^{1+1}a_{11}\begin{vmatrix}a_{22} &a_{23}\\a_{32} &a_{33}\end{vmatrix}+(-1)^{1+2}.a_{12}\begin{vmatrix}a_{21} &a_{23}\\a_{31} &a_{32}\end{vmatrix}+(-1)^{1+3}a_{13}\begin{vmatrix}a_{21} &a_{22}\\a_{31} &a_{32}\end{vmatrix}$
  • If each row or column of a determinant is multiplied by k,then its value is multiplied by k,then the value of the determinant is k|A|.
Let $\Delta=\begin{vmatrix}1+x& 1& 1\\1 & 1+y &1\\1 & 1&1+z\end{vmatrix}$
Apply $R_1\rightarrow R_1-R_2$ and $R_2\rightarrow R_2-R_3$
$\Delta=\begin{vmatrix}x& -y& 0\\ & y &-z\\1 & 1&1+z\end{vmatrix}$
Expanding along $R_1$ we get,
Given $|\Delta|=0$
$\Rightarrow xy+yz+xz=-xyz$
Divide by xyz on both sides
$\Rightarrow x^{-1}+y^{-1}+z^{-1}=-1$
Hence D is the correct answer.


answered Mar 26, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App