Ask Questions, Get Answers


In order that the function $f(x)=(x+1)^{\large\cot x}$ is continuous at $x=0$. f(0) must be defined as


Download clay6 mobile app

1 Answer

$l=\lim\limits_{x\to 0}(x+1)^{\large\cot x}$
$\Rightarrow \log l=\lim\limits_{x\to 0}\cot x.\log(1+x)$
$\Rightarrow \lim\limits_{x\to 0}\large\frac{\log(1+x)}{\tan x}\qquad\big(\large\frac{0}{0}\big)$
$\Rightarrow \lim\limits_{x\to 0}\large\frac{\Large\frac{1}{1+x}}{\sec^2x}$$=1$
For continuity value=limit
$\therefore f(0)=e$
Hence (d) is the correct answer.
answered Jan 2, 2014 by sreemathi.v

Related questions