logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

In a triangle $\bigtriangleup ABC$,a,b,c are its sides ,A,B $\xi\;$ C are its angles, if $\cot A,\cot B\;\xi\;\cot C$ are in AP , the a,b, and c are in which progression?

$(a)\;AP\qquad(b)\;GP\qquad(c)\;HP\qquad(d)\;No\;such\;relationship\;exists$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (a) AP
Explanation : $\cot A,\cot B \;\xi\;\cot C$ are in AP
$2 \cot B=\cot A+\cot C$
$2\sqrt\frac{(s(s-b))}{(s-a)(s-c)}=\sqrt\frac{s(s-a)}{(s-b)(s-c)}+\sqrt\frac{s(s-c)}{(s-a)(s-b)}$
$2(s-b)=(s-a)+(s-c)$
$2b=a+c$
$a,b\;\xi\;c\;are\;in\;AP.$
answered Jan 2, 2014 by yamini.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...