$\begin{array}{1 1} xyz \\ \large\frac{x+y+z}{2} \\ 1 \\ (x-y)(y-z)(z-x) \end{array}$

Answer : (c) 1

Explanation :

$x=a+(i-1)d=b\;r^{i-1}$

$y=a+(j-1)d=b\;r^{j-1}$

$z=a+(k-1)d=b\;r^{k-1}$

$x-y=(i-j)\;d$

$y-z=(j-k)\;d$

$z-x=(k-i)\;d$

$x^{y-z}\;.y^{z-x}\;.z^{x-y}= [b\;r^{(i-1)}]^{(j-k)d}\;. [b\;r^{(j-1)}]^{(k-i)d}\;. [b\;r^{(k-1)}]^{(i-j)d}$

$b^{(j-k+k-i+i-j)d}\;.r^{(i-1)(j-k)+(j-1)(k-i)+(k-1)(i-j)d}$

$=b^{0*d}\; r^{0*d}=(br)^0=1.$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...