Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Answer
Comment
Share
Q)

If $f(x)=[x^2]-[x]^2$ where [.] is the largest integer function then

$\begin{array}{1 1}(a)\;\text{f(x) is discontinuous for all integral value of x}\\(b)\;\text{f(x) is discontinuous only at x=0,1}\\(c)\;\text{f(x) is continuous only at x=1}\\(d)\;\text{None of these}\end{array}$

1 Answer

Comment
A)
$f(x)=[x^2]-[x]^2$
$f(1^+)=\lim\limits_{h\to 0}([(1+h)^2]-[1+h]^2)$
$\Rightarrow 1-1=0$
$f(1^-)=\lim\limits_{h\to 0}([(1-h)^2]-[1-h]^2)$
$\Rightarrow 0-0=0$
$\therefore f(x)$ is continuous at $x=1$
Hence (c) is the correct answer.
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...