Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $f(x)=[x^2]-[x]^2$ where [.] is the largest integer function then

$\begin{array}{1 1}(a)\;\text{f(x) is discontinuous for all integral value of x}\\(b)\;\text{f(x) is discontinuous only at x=0,1}\\(c)\;\text{f(x) is continuous only at x=1}\\(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
$f(1^+)=\lim\limits_{h\to 0}([(1+h)^2]-[1+h]^2)$
$\Rightarrow 1-1=0$
$f(1^-)=\lim\limits_{h\to 0}([(1-h)^2]-[1-h]^2)$
$\Rightarrow 0-0=0$
$\therefore f(x)$ is continuous at $x=1$
Hence (c) is the correct answer.
answered Jan 2, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App