$\begin{array}{1 1} \;6 \pi\;cm^2/cm \\ 6 \pi m^2/cm \\ 6 \pi m/cm \\ 6 \pi cm^2 \end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- If $y=f(x)$,then $\large\frac{dy}{dx}$ measures the rate of change of $y$ w.r.t $x$.
- $\big(\large\frac{dy}{dx}\big)_{x=x_0}$ represents the rate of change of $y$ w.r.t $x$ at $x=x_0$

Area of the circle =$\pi r^2\;cm^2$

Radius of the circle =3cm.

$A=\pi r^2$

Differentiating w.r.t $r$ we get,

$\large\frac{dA}{dr}$$=2\pi r$

Substituting for $r$ we get,

$\qquad=2\times \pi\times 3$

$\qquad=6 \pi\;cm^2/cm$

Ask Question

Tag:MathPhyChemBioOther

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...