logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Probability
0 votes

Let A and B be two events such that $ P ( A') = 0.3 \: P(B)=0.4 \: and \: P(A \cap B') = 0.5$ then $ P(B/A\: UB')=$

$\begin {array} {1 1} (1)\;\large\frac{1}{2} & \quad (2)\;\large\frac{3}{4} \\ (3)\;\large\frac{1}{4} & \quad (4)\;\large\frac{3}{7} \end {array}$

 

Can you answer this question?
 
 

1 Answer

0 votes
$ P ( B/A \cup B') = \large\frac{P( B \cap ( A \cup B'))}{P(A \cup B')}$
$ = \large\frac{((B \cap A) \cup (B \cap B'))}{P(A)+P(B')-P(A \cap B')}$
But $ P((B \cap A) \cup ( B \cap B'))$
$ = P(B \cap A ) = P(A)-P( A \cap B')$
$ = 0.7 - 0.5$
$ = 0.2$
and $ P(A)+P(B')-P(A \cap B')=0.7+0.6-0.5$
=$ 0.8$
$ \therefore $ From (1), $ ( P(B) / A \cup B') =  \large\frac{0.2}{0.8}$
$ \large\frac{1}{4}$
Ans : (3)

 

answered Jan 2, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...