logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  3-D Geometry
0 votes

The distance of the point $(-1,2,6)$ from the line through the point $(2,3,-4)$ along the vector $6\hat i+3\hat j-4\hat k$ is ?

$\begin{array}{1 1} 7 \\ 8 \\ 9 \\ 10 \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Equation of the line through the point $P(2,3,-4)$ along the vector $6\hat i+3\hat j-4\hat k$ is
$\large\frac{x-2}{6}=\frac{y-3}{3}=\frac{z+4}{-4}=\lambda$
Any point $Q$ on this line can be given in terms of $\lambda$ as $Q(6\lambda+2,3\lambda+3,-4\lambda-4)$
Let this point $Q$ be the foot of $\perp$ drawn from $A(-1,2,6)$ to the line.
$d.r.$ of $AQ$ is $(6\lambda+3,3\lambda+1,-4\lambda-10)$
Since $AQ$ is $\perp$ to the line, $\overrightarrow {AQ}.(6\hat i+3\hat j-4\hat k)=0$
$\Rightarrow\:6(6\lambda+3)+3(3\lambda+1)-4(-4\lambda-10)=0$
$\Rightarrow\:\lambda=-1$
$\therefore Q$ is given by $(-4,0,0)$
$\therefore$ The required distance $AQ=\sqrt {9+4+36}=7$
answered Jan 3, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...