logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \large \frac{e^{\Large\cos ^{-1}x}}{\sqrt {1-x^2}}$$dx$

$(a)\;-e^{\pi/2}-\sin^{-1}x \\(b)\;-e^{\pi/2}-\sin ^{-1} x \\(c)\;-e^{\pi/2}- \cos ^{-1}x \\ (d)\;None$

Can you answer this question?
 
 

1 Answer

0 votes
$\cot^{-1} x=\large\frac{\pi}{2}$$ -\sin ^{-1} x$
$\int \large\frac{e^{\pi/2-\sin^{-1}x }}{\sqrt {1-x^2}}$
=> $\sin ^{-1} x =t$
=>$\large\frac{1}{\sqrt {1-x^2}} $$dx=dt$
=> $ \int e^{\pi/2-t}.dt$
=> $e^{\pi/2-t}(-1) +c$
$-e^{\pi/2}-\sin ^{-1} x$
Hence b is the correct answer.
answered Jan 3, 2014 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...