Email
logo

Ask Questions, Get Answers

X
 
Questions  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  3-D Geometry
Answer
Comment
Share
Q)

The line through the point $\hat i+3\hat j+2\hat k$ and $\perp$ to the lines $\overrightarrow r=(\hat i+2\hat j-\hat k)+\lambda(2\hat i+\hat j+\hat k)$ and $\overrightarrow r=(2\hat i+6\hat j+\hat k)+\mu (\hat i+2\hat j+3\hat k)$ is ?

$\begin{array}{1 1} (a)\:\overrightarrow r=(\hat i+2\hat j-\hat k)+\beta(-\hat i+5\hat j-3\hat k)\: \:& \:(b)\:\overrightarrow r=(\hat i+3\hat j+2\hat k)+\beta (\hat i-5\hat j+3\hat k) \\ (c)\:\overrightarrow r=(\hat i+3\hat j+2\hat k)+\beta (\hat i+5\hat j+3\hat k)\:\:&\:(d)\:\overrightarrow r=(\hat i+3\hat j+2\hat k)+\beta (-\hat i+5\hat j+3\hat k) \end{array} $

1 Answer

Comment
A)
Toolbox:
  • $\overrightarrow a\times\overrightarrow b$ is along the direction $\perp$ to both $\overrightarrow a$ and $\overrightarrow b$.
Since the required line is $\perp$ to the given two lines,
$\overrightarrow r=(\hat i+2\hat j-\hat k)+\lambda(2\hat i+\hat j+\hat k)$ and $\overrightarrow r=(2\hat i+6\hat j+\hat k)+\mu(\hat i+2\hat j+3\hat k)$,
It will be along $(2\hat i+\hat j+\hat k)\times (\hat i+2\hat j+3\hat k)$
$i.e., $ $d.r.$ of the required line is $\left|\begin {array}{ccc}\hat i & \hat j &\hat k \\ 2 & 1 & 1 \\ 1 & 2 & 3\end {array} \right|=(1,-5,3)$
$\therefore\:$ Eqn. of the required line through $(1,3,2)$ is
$\overrightarrow r=(\hat i+3\hat j+2\hat k)+\beta(\hat i-5\hat j+3\hat k)$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
...