Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The function $f(x)=[x]^2-[x^2]$ where $[x]$ is the greatest integer less than or equal to x, is discontinuous at

$\begin{array}{1 1}(a)\;\text{all integers}\\(b)\;\text{all integers except 0 and 1}\\(c)\;\text{all integers except 0}\\(d)\;\text{all integers except 1}\end{array}$

Can you answer this question?

1 Answer

0 votes
We have $f(x)=[x]^2-[x^2]$
At $x=0$
LHL=$\lim\limits_{h\to 0}f(-h)=\lim\limits_{h\to 0}[-h^2]$
$\Rightarrow \lim\limits_{h\to 0}f(-1)^2-[h^2]=\lim\limits_{h\to 0}1-0=1$
RHL=$\lim\limits_{h\to 0}f(h)=\lim\limits_{h\to 0}[h]^2-[h^2]$
$\Rightarrow \lim\limits_{h\to 0}0-0=0$
LHL $\neq$ RHL
$f(x)$ is not continuous at $x=0$
At $x=1$
LHL=$\lim\limits_{h\to 0}f(1-h)=\lim\limits_{h\to 0}[1-h]^2-[(1-h)^2]$
$\Rightarrow \lim\limits_{h\to 0}1-1=0$
$f(x)$ is continuous at $x=1$
Clearly at other integral points f(x) is not continuous.
Hence (d) is the correct answer.
answered Jan 3, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App