Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The function $f(x)$ = $(x^2-1)\;$ $|x^2-3x+2|$ + $\cos(|x|)$ is not differentiable at


Can you answer this question?

1 Answer

0 votes
We have $|x|=\left\{\begin{array}{1 1}-x&if\;x < 0\\x&if\;x\geq 0\end{array}\right.$
Also $|x^2-3x+2|=|(x-1)(x-2)|$
$\Rightarrow \left\{\begin{array}{1 1}(1-x)(2-x)&if\;x < 1\\(x-1)(2-x)&if\;1\leq x\leq 2\\(x-1)(x-2)&if\;x\geq 2\end{array}\right.$
As $\cos(-\theta)=\cos\theta\Rightarrow \cos |x|=\cos x$
Given function can be written as
$\Rightarrow f(x)= \left\{\begin{array}{1 1}(x^2-1)(x-1)(x-2)+\cos x&if\;x \leq 1 \\-(x^2-1)(x-1)(x-2)+\cos x&if\;1\leq x < 2\\(x^2-1)(x-1)(x-2)+\cos x&if\;x\geq 2\end{array}\right.$
This function is differentiable at all points except possibly at $x=1$ and $x=2$
$Lf'(1)=\{\large\frac{d}{dx}$$\{(x^2-1)(x-1)(x-2)+\cos x\}_{x=1}$
$\Rightarrow -\sin 1$
$f$ is differentiable at $x=1$
$Lf'(2)=\{\large\frac{d}{dx}$$\{-(x^2-1)(x-1)(x-2)+\cos x\}_{x=2}$
$\Rightarrow -3-\sin 2$
$Rf'(2)=\{\large\frac{d}{dx}$$\{(x^2-1)(x-1)(x-2)+\cos x\}_{x=2}$
$\Rightarrow 3-\sin 2$
$Lf'(2)\neq Rf'(2)$
$\therefore f$ is not differentiable at $x=2$
Hence (d) is the correct answer.
answered Jan 3, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App