Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $x+|y|=2y$, then $y$ as a function of x is

$\begin{array}{1 1}(a)\;\text{defined for all real x}\\(b)\;\text{continuous at x=1}\\(c)\;\text{differentiable for all x}\\(d)\;\text{Such that }\large\frac{dy}{dx}=\frac{1}{2} \normalsize\text{for x < 0}\end{array}$

Can you answer this question?

1 Answer

0 votes
Given that $x+|y|=2y$
If $y < 0$ then $x-y=2y$
$\Rightarrow y=\large\frac{x}{3}$
$\Rightarrow x < 0$
If $y=0$ then $x=0$ if $ y > 0$ then $x+y=2y$
$\Rightarrow y=x\Rightarrow x > 0$
Thus we can define $f(x)=y=\left\{\begin{array}{1 1}x/3 &x < 0\\x &x \geq 0\end{array}\right.$
Continuity at $x=0$
LL=$\lim\limits_{h\to 0}f(0-h)=\lim\limits_{h\to 0}(-h/3)=0$
RL=$\lim\limits_{h\to 0}f(0+h)=\lim\limits_{h\to 0}h=0$
As LL=RL=f(0)
$\therefore f(x)$ is continuous at $x=0$
Hence (a) is the correct answer.
answered Jan 3, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App