Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

True or False: $(aA)^{-1}= \Large{ \frac{1}{a}}\normalsize A^{-1}$, where $a$ is a any real number and $A$ is a square matrix.

$\begin{array}{1 1} True \\ False \end{array}$

Can you answer this question?

1 Answer

0 votes
  • $A^{-1}=\frac{1}{|A|}(adj A)$
Let us consider $A=\begin{bmatrix}4 & 2\\3 & 2\end{bmatrix}$
aA=$\begin{bmatrix}4a & 2a\\3 a& 2a\end{bmatrix}$
To determine $(aA)^{-1}$ let us find |aA|.
adj (aA) can be obtained by interchanging the elements of $a_{11}$ and $a_{22}$ and changing the symbols of $a_{12}$ and $a_{21}$
Therefore $adj(aA)=\begin{bmatrix}2a & -2a\\-3a & 4a\end{bmatrix}$
$(aA)^{-1}=\frac{1}{2a^2}\begin{bmatrix}2a & -2a\\-3a & 4a\end{bmatrix}$
Taking a as the common factor
$(aA)^{-1}=\frac{a}{2a^2}\begin{bmatrix}2 & -2\\-3 & 4\end{bmatrix}$
$\quad=\frac{1}{2a}\begin{bmatrix}2 & -2\\3 & 4\end{bmatrix}=\frac{1}{a}\bigg(\frac{1}{2}\begin{bmatrix}2 & -2\\3 & 4\end{bmatrix}\bigg)$
Now $A^{-1}=\frac{1}{2}\begin{bmatrix}2 &-2\\3 & 4\end{bmatrix}$
Therefore $(aA)^{-1}=\frac{1}{a}A^{-1}$
Hence the statement is True.
answered Mar 27, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App