Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

True or False: $\begin{vmatrix}x+1 & x+2 & x+a\\x+2 & x+3 & x+b\\x+3 & x+4 & x+c\end{vmatrix}=0,$where a,b,c are in A.P.

Can you answer this question?

1 Answer

0 votes
  • The elementary transformations are
  • (i) We can interchange any two rows or two columns.
  • (ii) The multiplication of the elements of any row or column by a non-zero number.
  • (iii) The addition to the elements of any row or column,the corresponding elements of other row or column multiplied by any non-zero number.
Let $\Delta=\begin{vmatrix}x+1 & x+2 & x+a\\x+2 & x+3 & x+b\\x+3 & x+4 & x+c\end{vmatrix}$
Apply $R_1\rightarrow R_2-R_1$ and $R_2\rightarrow R_3-R_2$
$\Delta=\begin{vmatrix}1 & 1 & b-a\\1 & 1 & c-b\\x+3 & x+4 & x+c\end{vmatrix}$
Apply $C_1\rightarrow C_1-C_2$
$\Delta=\begin{vmatrix}0 & 1 & b-a\\0 & 1 & c-b\\-1 & x+4 & x+c\end{vmatrix}$
Now expanding along $C_1$ we get,
But since a,b,c are in A.P
Therefore $\Delta=2b-2b=0.$
Hence the value is 0.
So the statement is True.
answered Mar 27, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App