logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Determinants

True or False: $\begin{vmatrix}x+1 & x+2 & x+a\\x+2 & x+3 & x+b\\x+3 & x+4 & x+c\end{vmatrix}=0,$where a,b,c are in A.P.

1 Answer

Toolbox:
  • The elementary transformations are
  • (i) We can interchange any two rows or two columns.
  • (ii) The multiplication of the elements of any row or column by a non-zero number.
  • (iii) The addition to the elements of any row or column,the corresponding elements of other row or column multiplied by any non-zero number.
Let $\Delta=\begin{vmatrix}x+1 & x+2 & x+a\\x+2 & x+3 & x+b\\x+3 & x+4 & x+c\end{vmatrix}$
Apply $R_1\rightarrow R_2-R_1$ and $R_2\rightarrow R_3-R_2$
$\Delta=\begin{vmatrix}1 & 1 & b-a\\1 & 1 & c-b\\x+3 & x+4 & x+c\end{vmatrix}$
Apply $C_1\rightarrow C_1-C_2$
$\Delta=\begin{vmatrix}0 & 1 & b-a\\0 & 1 & c-b\\-1 & x+4 & x+c\end{vmatrix}$
Now expanding along $C_1$ we get,
$=0+0-1((b-a)-(c-b))=-b+a+c-b=a+c-2b$
But since a,b,c are in A.P
2b=a+c
Therefore $\Delta=2b-2b=0.$
Hence the value is 0.
So the statement is True.
answered Mar 27, 2013 by sreemathi.v
 

Related questions

...