Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  3-D Geometry
0 votes

The equation of the plane through origin and the line of intersection of the planes $\overrightarrow r.\overrightarrow a=\lambda\:\:and\:\:\overrightarrow r.\overrightarrow b=\mu$ is ?

$\begin{array}{1 1} (a)\:\overrightarrow r.(\lambda\overrightarrow a-\mu\overrightarrow b)=0\:\qquad\:(b)\:\overrightarrow r.(\lambda\overrightarrow b-\mu\overrightarrow a)=0\:\qquad\:(c)\:\overrightarrow r.(\lambda\overrightarrow a+\mu\overrightarrow b)=0\:\qquad\:(d)\:\overrightarrow r.(\lambda\overrightarrow b+\mu\overrightarrow a)=0 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Equation of any plane passing through the line of intersection of the planes $P_1=0$ and $P_2=0$ is given by $P_1+\alpha P_2=0$
Eqn of the plane through the line of intersection of the planes $\overrightarrow r.\overrightarrow a-\lambda=0 \:\:and\:\:\overrightarrow r.\overrightarrow b-\mu=0$ is
$(\overrightarrow r.\overrightarrow a-\lambda)+\alpha (\overrightarrow r.\overrightarrow b-\mu)=0$...(i)
But given that this plane passes through origin.
$\therefore \:\overrightarrow r=0$, satisfies the ewquation of the plane.
Substituting the value of $\lambda$ in (i) we get the required equation of the plane as
$\overrightarrow r.(\mu \overrightarrow a-\lambda \overrightarrow b)=0$
answered Jan 4, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App