Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Examine the continuity of the function $f(x)=x^3+2x^2-1$ at $x=1$

Can you answer this question?

1 Answer

0 votes
  • A function $y=f(x)$ is said to be continuous at $x=a$,if $\lim\limits_{\large x\to a}f(x)=f(a)$ and left hand limit is equal to the right hand limit.
Step 1:
Let the function be $f(x)=x^3+2x^2-1$
We are asked to check the continuity at $x=1$.
$\lim\limits_{\large x\to 0^-}f(x)=\lim\limits_{\large h\to 0}(1-h)$
$\qquad\qquad=\lim\limits_{\large h\to 0}(1-h)^3+2(1-h)^2-1$
Step 2:
On expanding and simplifying we get,
$\qquad\qquad=\lim\limits_{\large h\to 0}1-3h^2+3h-h^3+2-4h+h^2-1$
On applying limits we get,
Step 3:
$\lim\limits_{\large x\to 0^+}f(x)=\lim\limits_{\large h\to 0}(1+h)$
$\qquad\qquad=\lim\limits_{\large h\to 0}(1+h)^3+2(1+h)^2-1$
$\qquad\qquad=\lim\limits_{\large h\to 0}1+3h^2+3h+h^3+2+4h+h^2-1$
On applying limits we get,
Step 4:
Since the left hand limit=right hand limit.
Therefore the function is continuous at $x=1$
answered Jun 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App