Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Examine the continuity of f(x) at the indicated point $f(x)=\left \{\begin{array}{1 1}3x+5 & if\;x\geq 2\\x^2 & if\;x<2\end{array}\right.$ at $x=2.$

Can you answer this question?

1 Answer

0 votes
  • A function is said to be discontinuous at $x=a$,if both the right hand limit and left hand limit does not exist.
  • It is also discontinuous if RHL $\neq$ LHL.
Step 1:
$f(x)=3x+5, \quad x \geq 2$
Step 2:
RHL: In this case $x \geq 2$
$f(2^+)=\lim\limits _{\large x \to 2+} f(x)=\lim \limits_{\large x \to 2^+} (3x+5)$
On applying limits we get
$\qquad\quad\qquad\qquad\;\; =3(2)+5$
$\qquad\quad \qquad\qquad\;\;=11$
Step 3:
LHL: In this case $x < 2$
$f(2-)=\lim\limits _{\large x \to 2^-} f(x)=\lim\limits _{\large x \to 2^-} x^2$
On applying limits we get
$\qquad\quad \qquad\qquad\;\;=(2)^2$
$\qquad\quad \qquad\qquad\;\;=4$
Step 4:
Hence $\lim\limits_{\large x\to 2^-}f(x) \neq \lim\limits_{\large x\to 2^+}f(x)$
Therefore $f(x) $ is not continuous at $x=2$
answered Jun 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App