Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Examine the continuity of f(x) at the indicated point $f(x)=\left \{\begin{array}{1 1}\large\frac{1-\cos 2x}{x^2} & \normalsize if\;x\neq 0\\5 & if\;x=0\end{array}\right.$at x=0.

Can you answer this question?

1 Answer

0 votes
  • A function is said to be discontinuous at $x=a$ if RHL and LHL does not exist.
  • It is also discontinuous if RHL $\neq$ LHL.
Step 1:
Given : $f(x)=\left \{\begin{array}{1 1}\large\frac{1-\cos 2x}{x^2} & \normalsize if\;x\neq 0\\5 & if\;x=0\end{array}\right.$at x=0.
The given point is $x=0$
Step 2:
The left hand limit at $x > 0$
Let $\lim\limits_{\large x\to 0^-}f(x)=\lim\limits_{\large x\to 0^-}\large\frac{1-\cos 2x}{x^2}$
But we know $1-\cos 2x=\large\frac{2\sin^2x}{x^2}$
(i.e) $\lim\limits_{\large x\to 0^-}f(x)=\lim\limits_{\large x\to 0^-}\large\frac{2\sin^2x}{x^2}$
$\qquad\qquad\quad\;\;\;=\lim\limits_{\large x\to 0^-}2\big(\large\frac{\sin x}{x}\big)^2$
But we know $\lim\limits_{\large x\to 0^-}\large\frac{\sin\theta}{\theta}$$=1$
On applying limits,
$\lim\limits_{\large x\to 0^-}f(x)=2\times 1$
Step 3:
The right hand limit at $x < 0$
$\lim\limits_{\large x\to 0^+}f(x)=\lim\limits_{\large x\to 0^+}\large\frac{1-\cos 2x}{x^2}$
$\qquad\quad\quad=\lim\limits_{\large x\to 0^+}\large\frac{2\sin^2x}{x^2}$
$\qquad\quad\quad=\lim\limits_{\large x\to 0^+}2\big(\large\frac{\sin x}{x}\big)^2$
On applying limits,
$\lim\limits_{\large x\to 0^+}f(x)=2\times 1$
Step 4:
At $x=0$
$f(x)=f(0)=\large\frac{1-\cos 2(0)}{0}$
The function becomes undefined.
So the function is not continuous at $x=0$
It is discontinuous.
answered Jun 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App