Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $f(x)=\large\frac{x}{2}$$-1$, then on the interval $[0,\pi]$

$\begin{array}{1 1}(a)\;\tan[f(x)]\;and \;1/f(x)\;are\;both\;continuous\\(b)\;\tan[f(x)]\;and \;1/f(x)\;are\;both\;discontinuous\\(c)\;\tan[f(x)]\;and \;f^{-1}(x)\;are\;both\;continuous\\(d)\;\tan[f(x)]\;is\; continuous\;but\;1/f(x)\;is\;not\end{array}$

Can you answer this question?

1 Answer

0 votes
We have $f(x)=\large\frac{x}{2}$$-1$
$\therefore [f(x)]=[\large\frac{x}{2}$$-1]=-1\qquad 0\leq x < 2$
$\tan [f(x)]=\tan(-1),0 \leq x < 2$
$\qquad\;\quad\;=0,2\leq x\leq \pi$
$\therefore$ The function $\tan[f(x)]$ is discontinuous at $x=2$
Also the function $\large\frac{1}{f(x)}=\frac{1}{\Large\frac{x}{2}-\normalsize 1}$
$\Rightarrow \large\frac{2}{x-2}$ is discontinuous at $x=2$
Thus both the given functions $\tan[f(x)]$ as well as $\large\frac{1}{f(x)}$ are continuous on the interval $[0,\pi]$
Also $f^{-1}(x)=y$
$\Rightarrow x=f(y)=\large\frac{y}{2}$$-1$
$\Rightarrow y=2(x+1)$
$f^{-1}(x)=2(x+1)$ is continuous on $[0,\pi]$
Hence (b) is the correct answer.
answered Jan 4, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App