Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The function $f(x)=\left\{\begin{array}{1 1}\large\frac{x^2}{a}&0\leq x <1\\a&1\leq x < \sqrt 2\\\large\frac{2b^2-4b}{x^2}&\sqrt 2\leq x < \infty\end{array}\right.$ is continuous for $0\leq x < \infty$ then the most suitable values of a and b are

$\begin{array}{1 1}(a)\;a=1,b=-1&(b)\;a=-1,b=1+\sqrt 2\\(c)\;a=-1,b=1&(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
$\lim\limits_{\large x\to 1^-}f(x)=\lim\limits_{\large x\to 1}\large\frac{x^2}{a}=\frac{1}{a}$
$\Rightarrow \lim\limits_{\large x\to 1^+}f(x)$
Hence $a^2=1\Rightarrow a=\pm 1$
Also $\lim\limits_{x\to \sqrt 2}f(x)=a$
$\lim\limits_{x\to \sqrt 2}f(x)=\large\frac{2b^2-4b}{2}$
$\therefore \large\frac{2b^2-4b}{2}$$=a$
Now if $a=-1$ then $b=1$
If $a=1,b=1\pm \sqrt{2}$
Hence (c) is the correct option.
answered Jan 4, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App